Arrhythmic Complications of MI

Teferi Mitiku, MD
Assistant Clinical Professor of Medicine
University of California Irvine
Arrhythmic Complications of MI

- 90% of patients develop some form of arrhythmia
 - during or immediately after the event
- 25% of patients manifest within the first 24 hours
- First Hour
 - Risk of serious arrhythmias, such as VF or VT
 - The risk declines thereafter
- Higher with an STEMI
- Most peri-infarct arrhythmias are benign and self-limited
- But the arrhythmias that result in hypotension
 - Increase myocardial oxygen requirements
 - Predispose the patient to develop additional malignant ventricular arrhythmias
Pathophysiology of arrhythmic complications

- MI results:
 - Generalized autonomic dysfunction
 - Enhanced automaticity of the myocardium and conduction system

- Electrolyte imbalances:
 - Hypokalemia and Hypomagnesemia

- Hypoxia

- The damaged myocardium acts as substrate
 - Re-entrant circuits
 - Changes in tissue refractoriness

- Enhanced efferent sympathetic activity
 - Increased catecholamines
 - Local release of catecholamines from nerve endings in the heart muscle

- Transmural infarction
 - Interrupt afferent and efferent limbs of the sympathetic nervous system
 - Autonomic imbalance is the promotion of arrhythmias
Arrhythmias in Acute MI

<table>
<thead>
<tr>
<th>Rhythm</th>
<th>Cause</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sinus Bradycardia</td>
<td>- ↑Vagal tone</td>
</tr>
<tr>
<td></td>
<td>- ↓SA nodal artery perfusion</td>
</tr>
<tr>
<td>Sinus Tachycardia</td>
<td>- CHF</td>
</tr>
<tr>
<td></td>
<td>- Volume depletion</td>
</tr>
<tr>
<td></td>
<td>- Pericarditis</td>
</tr>
<tr>
<td></td>
<td>- Chronotrophic drugs (e.g. Dopamine)</td>
</tr>
<tr>
<td>APB’s, atrial fib, VPB’s, VT, VF</td>
<td>- CHF</td>
</tr>
<tr>
<td></td>
<td>- Atrial Ischemia</td>
</tr>
<tr>
<td></td>
<td>- Ventricular ischemia</td>
</tr>
<tr>
<td></td>
<td>- CHF</td>
</tr>
<tr>
<td>AV block (1°, 2°, 3°)</td>
<td>- IMI: ↑Vagal tone and ↓AV nodal artery flow</td>
</tr>
<tr>
<td></td>
<td>- AMI: Destruction of conduction tissue</td>
</tr>
</tbody>
</table>
Classification of peri-infarction arrhythmias

• Supraventricular Tachyarrhythmias
 – Sinus tachycardia
 – Premature atrial contractions
 – Paroxysmal SVT
 – Atrial flutter
 – Atrial fibrillation

• Accelerated Junctional Rhythms

• Bradyarrhythmias
 – Sinus bradycardia
 – junctional bradycardia
 – Atrioventricular (AV) blocks
 – First-degree AV block
 – Second-degree AV block
 – Third-degree AV block

• Intraventricular Blocks
 – Left anterior fascicular block (LAFB)
 – Right bundle branch block (RBBB)
 – Left bundle branch block (LBBB)

• Ventricular Arrhythmias
 – Premature ventricular contractions (PVCs)
 – Accelerated Idioventricular Rhythm
 – Ventricular tachycardia
 – Ventricular fibrillation

• Reperfusion Arrhythmias
Arrhythmic Complications:
Supraventricular Tachyarrhythmias

• **Tachycardia:**
 – Increases myocardial oxygen demand
 – Decreased length of diastole compromises coronary flow
 – Worsening myocardial ischemia

• **Sinus tachycardia:**
 – Pain, Anxiety, Heart failure, Hypovolemia, Hypoxia, Anemia, Pericarditis, Pulmonary embolism

• **Premature atrial contractions (PAC):**
 – Often occur before the development of PSVT, atrial flutter, or atrial fibrillation
 – The usual cause—Atrial distention due to increased LV diastolic pressure or inflammation associated with pericarditis

• **Paroxysmal supraventricular tachycardia (PSVT):**
 – The incidence of a PSVT in AMI is less than 10%
 – Adenosine can be used when hypotension is not present
 – Intravenous diltiazem or beta-blocker- if not heart failure
 – Hemodynamic compromise- DCCV
Arrhythmic Complications: Supraventricular Tachyarrhythmias

• **Atrial fibrillation**
 – 10-15% among patients who have MIs
 – Due to LV failure, ischemic injury to the atria, or RV infarction
 – Pericarditis
 – Associated with an increased risk of mortality and stroke, particularly in AMI

• **Treatment Strategies:**
 – DCCV if unstable
 – Stable condition- Rate or rhythm control
 – IV amiodarone or IV digoxin (in patients with LV dysfunction or heart failure)
 – IV beta blockers and or diltiazem -- in pt without moderate-severe heart failure
 – If new-onset conversion to sinus rhythm should be considered
 – Anticoagulation
 – Duration of anticoagulation unclear for new transient onset of afib.

• **Atrial flutter**
 – < 5% of patients with AMI
 – Usually transient and results from sympathetic overstimulation

• **Treatment strategies:**
 – Similar to those for atrial fibrillation
 – Rate control is difficult
 – DCCV may be needed
Arrhythmic Complications:
Accelerated Junctional Rhythm

• Results from increased automaticity of the junctional tissue
 – Heart rate of 70-110 bpm
• Most common in IMI
• Treatment is directed at correcting the underlying ischemia
ST/LBBB/AWMI
AF/Afl – NSRcAPCs – AF/Afl
Typical Atrial Flutter breaks to NSR
AVNRT
NSR with ‘Incessant’ Atypical AVNRT

Stem: A 74-year-old woman seen in the emergency room for weakness and dyspnea.
IWMI/JuncRhy/EctAtRhy c Capture
Conduction System: detail
Blood supply of the septum

Blood Supply of the IV Septum

Blood Supply in the Conduction System

<table>
<thead>
<tr>
<th>Conduction Pathway</th>
<th>Primary Arterial Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>• SA node</td>
<td>- RCA (70% of patients)</td>
</tr>
<tr>
<td>• AV node</td>
<td>- RCA (85% of patients)</td>
</tr>
<tr>
<td>• Bundle of His</td>
<td>- LAD (septal branches)</td>
</tr>
<tr>
<td>• RBB</td>
<td>- Proximal portion by LAD</td>
</tr>
<tr>
<td></td>
<td>- Distal portion by RCA</td>
</tr>
<tr>
<td>• LBB</td>
<td></td>
</tr>
<tr>
<td>Left anterior fascicle</td>
<td>- LAD</td>
</tr>
<tr>
<td>Left posterior fascicle</td>
<td>- LAD and PDA</td>
</tr>
</tbody>
</table>
Think Anatomically

LAD supplies most of the conduction system **below** the A-V node
 (i.e. the His-Purkinje system)
RCA supplies most of the conduction system **at or above** the A-V node
 (i.e. the A-V node and, usually, the S-A node)
Arrhythmic Complications: Bradyarrhythmias

• **Sinus bradycardia**
 – Common IMI, upto 40%
 – Observed in the first 1-2 hours after IMI
 – Results from Cholinergic stimulation of heart from vagus nerve damage
 – Maybe protective- reduce Oxygen demand
 – Clinically significant bradycardia that decreases cardiac output and hypotension may result in ventricular arrhythmias

• Usually not associated with an increase in the acute mortality risk

• If symptomatic and or hypotensive: (sinus rate of < 40 bpm with hypotension)
 – Atropine
 – If atropine is ineffective transcutaneous or transvenous pacing is indicated
 – Inotropes --dopamine, epinephrine and/or dobutamine

• **Junctional bradycardia**
 – Protective AV junctional escape rhythm --35-60 bpm in patients with IMI
 – Not usually associated with hemodynamic compromise
 – Treatment is typically not required
Arrhythmic Complications: AV and Intraventricular Blocks

First-degree AV block
- ~15%, most commonly in IMI
- Usually its above His Bundle
- No specific therapy is indicated

Second-degree AV block
- **Mobitz type I** -- 10%
 - Common with IMI
 - It does not affect the patient's overall prognosis
 - A Mobitz type I block does not necessarily require treatment

- **A Mobitz type II AV block**
 - accounts < 1%
 - Usually wide QRS complex
 - Almost always associated with AMI
 - Often progresses suddenly to a complete heart block.
 - Mobitz type II AV blocks are associated with a poor prognosis
 - Mortality rate associated with their progression to a complete heart block is approximately 80%

- Transcutaneous pacing or atropine
- Possibly a permanent pacemaker
Acute I(WMI with Mobitz I
CHB with Junctional Escape Rhythm
CHB with Fasc Escape
LBBB with 2:1 Mobitz II Block
LBBB with 3:2 Mobitz 2 Block
LBBB to CHB
Arrhythmic Complications: AV and Intraventricular Blocks

- A third-degree AV block
- Occurs in ~5-15% of MI
 - May occur with anterior or inferior infarctions
Arrhythmic Complications: AV and Intraventricular Blocks

Inferior MI
- Gradually progress from first degree
- Level of block is upranodal or intranodal
- Escape rhythm is usually stable with a narrow QRS and rates exceeding 40 bpm.
- In 30% of patients, the block is below the His bundle
- Usually responds to atropine
- In most patients, it resolves within a few days
- The mortality rate ~15%, high if RV infarction is present
- Symptomatic patients whose condition is unresponsive to atropine- temp pacing
- Permanent pacing should be considered if persists after revascularization

Anterior MI
- Intraventricular block or a Mobitz type II AV block usually precedes a third-degree AV block
- Occurs suddenly
- Associated with a high mortality rate
- Unstable escape rhythms with wide QRS complexes and at rates of less than 40 bpm
- Immediate pacing required
- Often receive a permanent pacemaker
Arrhythmic Complications: Intraventricular Blocks

- **Intraventricular blocks**
- ~15% of patients with MI
- Isolated LAFB occurs in 3-5% of patients with MI
- Isolated LPFB occurs in 1-2% of patients who have an MI
- RBB receives its dominant blood supply from the LAD artery
- New RBBB, ~2% of patients with AMI, suggests a large infarct territory
 - Progression to complete heart block is uncommon
 - Anterior MI and a new RBBB, the substantial risk for death is mostly from cardiogenic shock, due to the large size of the myocardial infarct
- RBBB with an LAFB is commonly occurs with occlusion of the proximal LAD coronary artery
 - Higher risk of developing complete AV block is heightened
 - Mortality is mostly related to the amount of muscle loss
 - In 40% of patients, a trifascicular block progresses to a complete heart block-rate of progression unknown
Arrhythmic Complications:

Ventricular Arrhythmias

- **Premature ventricular contractions (PVC)**
 - Warning for ? Other malignant arrhythmias

- **Accelerated idioventricular rhythm (AIVR)**
 - AIVR is seen in as many as 20% of patients who have an MI
 - Wide QRS complex escape rate faster than the atrial rate, but less than 100 bpm
 - The mechanism might involve:
 - Structural damage to Sinoatrial node or the AV node
 - Abnormal ectopic focus in the ventricle

- AIVR no associated with increased mortality
- Reperfusion arrhythmia
- No need to treat
- Suppression with AAD can lead to asystole
Arrhythmic Complications:
Ventricular Arrhythmias

- **Nonsustained ventricular tachycardia (NSVT)**
 - Within 48 hours of MI not associated with an increased mortality risk
 - If occurs >48 hours after MI with depressed LVEF-- may represent increased mortality
 - EPS maybe needed for risk assessment
 - Multiple episodes NSVT require intensified monitoring
 - Serum K+ >4.5 mEq/L, and serum Mag >2.0 mEq/L
 - Ongoing ischemia should aggressively be sought and corrected if found

- **Sustained ventricular tachycardia**
 - Monomorphic VT - myocardial scar
 - Polymorphic VT - ischemia
 - Sustained polymorphic VT after an AMI is associated with a hospital mortality rate of 20%
 - If sustained and HD compromise → DCCV

- ?ICD vs EPS guided ICD vs Life vest
Arrhythmic Complications: Ventricular Arrhythmias

• Greatest in the first hour ~(4.5%)
 – ~80% occur within 12 hours
• Secondary or late VF >48 hours after an MI
 – Associated with pump failure and cardiogenic shock
 – Risk factors: Large infarct, BBB and AMI
 – In-hospital mortality rate of 40-60%

• Each minute of uncorrected VF is associated a 10% decrease in the likelihood of survival

• Intravenous amiodarone and lidocaine
• If not in cardiogenic shock- Beta Blockers- reduce VF and mortality
Arrhythmic Complications: Reperfusion Arrhythmias

• In the past, the sudden onset of rhythm disturbances after thrombolytic therapy in patients with AMI was believed to be a marker of successful coronary reperfusion.

• However, a high incidence of identical rhythm disturbances is observed in patients with AMI in whom coronary reperfusion is unsuccessful.

• Therefore, these so-called reperfusion arrhythmias are neither sensitive nor specific for reperfusion.
Sustained VT
Sustained VT
Polymorphic VT c Coronary Spasm
Left Posterior Fascicular Tachycardia
Sustained VT
Baseline EKG p DCCV
LBBB and AMI
Sustained VT
Spontaneous Termination of VT
RBBB/LAHB/IWMI/AWMI/ProlongedQTc
Prolonged QT with Torsades
Baseline – AF/LBBB
Baseline – AWMI/RBBB/LAHB
Left Posterior Fascicular Tachycardia
AF with Type A WPW
Isorhythmic AIVR